Skip to main content

Equipment Number

Anchor weight is determined by a Classification Society formula that throws up a number which we call as Equipment number.

The Equipment number is the trigger to decide the anchor weight the chain size and the length of cable to be used.

The equipment number, EN, on which the requirements of equipment are based is to be calculated as follows:-
EN = K * ENc
ENc = Δ^2/3 + 2BH + 0.1*A

ENc is the function of the ship displacement, Deck height, Area of the superstructure.

Δ = moulded displacement, [t], to the summer load water line
H = effective height, [m], from the summer load waterline to the top of the uppermost deckhouse, to be measured as follows:
H = a + Σhi
a = distance [m] from summer load waterline amidships to the upper deck at side
hi = height [m] on the centreline of each tier of houses having a breadth greater than B/4. For lowest tier, hi is to be measured at centre line from upper deck, or from a notional deck line where there is a local discontinuity in the uppers deck.
A = area [m2] in profile view of the hull, superstructures and houses above the summer load waterline, which is within the Rule length of the vessel. Houses of breadth less than B/4 are to be disregarded.

In the calculation of H and A, sheer and trim are to be ignored.

Parts of windscreens or bulwarks which are more than 1.5[m] in height are to be regarded as parts of houses when determining H and A. The height of the hatch coamings and that of any deck cargo, such as containers, may be disregarded.

‘K’ is a factor depending upon the type of vessel and service notation as given below: For fishing vessels,
K = 1.00
For other vessels,
K = 1.00 for vessels of Unrestricted Service.
K = 0.85 for vessels of Coastal Service

Having found the equipment numeral the details regarding sizes and quality may be obtained from the rigging tables provided in these regulations. The equipment numeral is also given in the class certificate and hence there is no need to refer to this formula to find the equipment numeral whenever there is a need as in the case of ordering new chain lengths when old chain lengths have been worn beyond the rule requirement. 


Popular posts from this blog

Load Line & Why it is Important

Merchant ships have a marking on their hull know as the Plimsoll line or the Plimsoll mark, which indicates the limit until which ships can be loaded with enough cargo, internationally, the Plimsoll line on a ship is officially referred to as the international load line. Every type of ship has a different level of floating and the Plimsoll line on a ship generally varies from one vessel to another.  All vessels of 24 meters and more are required to have this Load line marking at the centre position of the length of summer load water line. There are two types of Load line markings:- Standard Load Line marking – This is applicable to all types of vessels. Timber Load Line Markings – This is applicable to vessels carrying timber cargo. These marks shall be punched on the surface of the hull making it visible even if the ship side paint fades out. The marks shall again be painted with white or yellow colour on a dark background/black on a light background.  The comp

Difference Between A, B & C-Class Divisions?

IMO Symbol A Class Division  IMO Symbol B Class Division  SOLAS has tables for structural fire protection requirement of bulkheads and decks. The requirements depend on the spaces in question and are different for passenger ships and cargo ships. The Administration has required a test of a prototype bulkhead or deck in accordance with the Fire Test Procedures Code to ensure that it meets the above requirements for integrity and temperature rise. Types of Divisions: "A" Class "B" Class "C" Class "A" Class: "A" class divisions are those divisions formed by bulkheads and decks which comply with the following criteria: They are constructed of steel or equivalent material They are suitably stiffened They are constructed as to be capable of preventing the passage of smoke and flame to the end of the one-hour standard fire test. they are insulated with approved non-combustible materials such that the average tempera

Pump Shaft Alignment Procedure

Types of shaft alignment methods: Visual Line-Up Straightedge/Feeler Gauge Rim and Face Cross Dial Reverse Dial Laser Visual Line-Up The visual line-up method is the most common method of alignment. Used in initial installations, visual line-up allows technicians to analyze the working conditions and feasibility of installation. Straightedge/Feeler Gauge Straightedges are used to determine the offset between coupling halves. Corrections are made under all four of the machines feet. Feeler gauges or taper gauges measure the gap between coupling halves at the bottom and top of the coupling. Rim and Face This method is similar in principle to using a straightedge and feeler gauge, but more accurate since dial indicators are used. The rim reading measures the offset between the coupling halves. The face reading measures the angular difference between the faces of the coupling. Changes are calculated with the same formula as the straightedge/feeler gauge met