Skip to main content

Ballast Water Management


Since the introduction of steel-hulled vessels ,water has been used as ballast to stabilize, appropriate stress distribution of the hull and for propeller immersion of vessels at sea. Ballast water is pumped in to the vessel to maintain safe operating conditions throughout a voyage. While ballast water is essential for safe and efficient modern shipping operations, it poses serious ecological, economic and health problems due to the multitude of marine species
inadvertently carried in ships’ ballast water. These include bacteria, microbes, small invertebrates, eggs, cysts and larvae of various species. When Ballast water taken in from one region or area is
pumped out in another part of the world, the transferred species may survive to establish a reproductive population in the host environment, becoming invasive, out competing native species and multiplying into pest proportions.

Ballast Water Management on ships is required to prevent this ecological damage.

Scientists first recognized the signs of an alien species introduction after a mass occurrence of the Asian phytoplankton algae Odontella (Biddulphia sinensis) in the North Sea in 1903. But it was not until the 1970s that the scientific community began reviewing the problem in detail. In the late 1980s, Canada and Australia were
among countries experiencing particular problems with invasive species, and they brought their concerns to the attention
of IMO’s Marine Environment Protection BALLAST WATER MANAGEMENT Committee (MEPC).

Comments

Popular posts from this blog

Load Line & Why it is Important

Merchant ships have a marking on their hull know as the Plimsoll line or the Plimsoll mark, which indicates the limit until which ships can be loaded with enough cargo, internationally, the Plimsoll line on a ship is officially referred to as the international load line. Every type of ship has a different level of floating and the Plimsoll line on a ship generally varies from one vessel to another.  All vessels of 24 meters and more are required to have this Load line marking at the centre position of the length of summer load water line. There are two types of Load line markings:- Standard Load Line marking – This is applicable to all types of vessels. Timber Load Line Markings – This is applicable to vessels carrying timber cargo. These marks shall be punched on the surface of the hull making it visible even if the ship side paint fades out. The marks shall again be painted with white or yellow colour on a dark background/black on a light background.  The comp

Difference Between A, B & C-Class Divisions?

IMO Symbol A Class Division  IMO Symbol B Class Division  SOLAS has tables for structural fire protection requirement of bulkheads and decks. The requirements depend on the spaces in question and are different for passenger ships and cargo ships. The Administration has required a test of a prototype bulkhead or deck in accordance with the Fire Test Procedures Code to ensure that it meets the above requirements for integrity and temperature rise. Types of Divisions: "A" Class "B" Class "C" Class "A" Class: "A" class divisions are those divisions formed by bulkheads and decks which comply with the following criteria: They are constructed of steel or equivalent material They are suitably stiffened They are constructed as to be capable of preventing the passage of smoke and flame to the end of the one-hour standard fire test. they are insulated with approved non-combustible materials such that the average tempera

Pump Shaft Alignment Procedure

Types of shaft alignment methods: Visual Line-Up Straightedge/Feeler Gauge Rim and Face Cross Dial Reverse Dial Laser Visual Line-Up The visual line-up method is the most common method of alignment. Used in initial installations, visual line-up allows technicians to analyze the working conditions and feasibility of installation. Straightedge/Feeler Gauge Straightedges are used to determine the offset between coupling halves. Corrections are made under all four of the machines feet. Feeler gauges or taper gauges measure the gap between coupling halves at the bottom and top of the coupling. Rim and Face This method is similar in principle to using a straightedge and feeler gauge, but more accurate since dial indicators are used. The rim reading measures the offset between the coupling halves. The face reading measures the angular difference between the faces of the coupling. Changes are calculated with the same formula as the straightedge/feeler gauge met