Skip to main content

Precautions to be Observed during Docking & Undocking

  1. Bunkers should not be taken when the ship is on the blocks. In cases where ships sail out immediately after dry-docking. Bunker is to be supplied after the ship has undocked and is floating.
  2. Shore power cables are to be connected after the ship has docked and the dock is dry. The cables should be disconnected before flooding the dock.
  3. During the flooding of the dock, the flooding is stooped when the level of water in the dock reaches just above the high suction box. All the sea suction valves under the floor plates should be checked for any leaks. In this situation, the ship is not floating and is still sitting firmly on the blocks. This verification is necessary to avoid any mistakes made by shipyard staff whereby some valves have not been fitted their cover joint sand gland packings. A second docking can be avoided by this check.
  4. The Master and C/E should visit the dry dock before flooding and verify the following before giving orders for flooding:     (a) The rudder fastening bolts are tight and cemented, the                 pintle cover plates are in place and welded.                           (b) The propeller cone fitted and all bolts cemented.               (c) The rope guard in place and properly welded.                   (d) The sea suction box grids fitted and locked with locking             wire.                                                                                         (e) Bilge keel repairs are completed.                                         (f) Both anchors hoisted and housed in their respective hawse         pipes.                                                                                       (g) Freshwater can be supplied in the dry dock as required.              But it should be ensured that the soundings of freshwater          tanks at the time of un-docking is the same as soundings            when docking.

Comments

Popular posts from this blog

Difference Between A, B & C-Class Divisions?

IMO Symbol A Class Division  IMO Symbol B Class Division  SOLAS has tables for structural fire protection requirement of bulkheads and decks. The requirements depend on the spaces in question and are different for passenger ships and cargo ships. The Administration has required a test of a prototype bulkhead or deck in accordance with the Fire Test Procedures Code to ensure that it meets the above requirements for integrity and temperature rise. Types of Divisions: "A" Class "B" Class "C" Class "A" Class: "A" class divisions are those divisions formed by bulkheads and decks which comply with the following criteria: They are constructed of steel or equivalent material They are suitably stiffened They are constructed as to be capable of preventing the passage of smoke and flame to the end of the one-hour standard fire test. they are insulated with approved non-combustible materials such that the average tempera

Load Line & Why it is Important

Merchant ships have a marking on their hull know as the Plimsoll line or the Plimsoll mark, which indicates the limit until which ships can be loaded with enough cargo, internationally, the Plimsoll line on a ship is officially referred to as the international load line. Every type of ship has a different level of floating and the Plimsoll line on a ship generally varies from one vessel to another.  All vessels of 24 meters and more are required to have this Load line marking at the centre position of the length of summer load water line. There are two types of Load line markings:- Standard Load Line marking – This is applicable to all types of vessels. Timber Load Line Markings – This is applicable to vessels carrying timber cargo. These marks shall be punched on the surface of the hull making it visible even if the ship side paint fades out. The marks shall again be painted with white or yellow colour on a dark background/black on a light background.  The comp

Pump Shaft Alignment Procedure

Types of shaft alignment methods: Visual Line-Up Straightedge/Feeler Gauge Rim and Face Cross Dial Reverse Dial Laser Visual Line-Up The visual line-up method is the most common method of alignment. Used in initial installations, visual line-up allows technicians to analyze the working conditions and feasibility of installation. Straightedge/Feeler Gauge Straightedges are used to determine the offset between coupling halves. Corrections are made under all four of the machines feet. Feeler gauges or taper gauges measure the gap between coupling halves at the bottom and top of the coupling. Rim and Face This method is similar in principle to using a straightedge and feeler gauge, but more accurate since dial indicators are used. The rim reading measures the offset between the coupling halves. The face reading measures the angular difference between the faces of the coupling. Changes are calculated with the same formula as the straightedge/feeler gauge met